Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 13(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34684431

RESUMO

BACKGROUND: The effects of low-calorie dieting in obesity are disappointing in the long run. The brain's energy homeostasis plays a key role in the regulation of body weight. We hypothesized that the cerebral energy status underlies an adaptation process upon body weight loss due to hypocaloric dieting in humans. OBJECTIVE: We instructed 26 healthy obese participants to reduce body weight via replacement of meals by a commercial diet product for two weeks. The cerebral energy status was assessed by 31 phosphorus magnetic resonance spectroscopy (31 PMRS) before and after low-caloric dieting as well as at follow-up. A standardized test buffet was quantified after body weight loss and at follow-up. Blood glucose metabolism and neurohormonal stress axis activity were monitored. RESULTS: Weight loss induced a decline in blood concentrations of insulin (p = 0.002), C-peptide (p = 0.005), ACTH (p = 0.006), and norepinephrine (p = 0.012). ATP/Pi (p = 0.003) and PCr/Pi ratios (p = 0.012) were increased and NADH levels reduced (p = 0.041) after hypocaloric dieting. At follow-up, weight loss persisted (p < 0.001), while insulin, C-peptide, and ACTH increased (p < 0.005 for all) corresponding to baseline levels again. Despite repealed hormonal alterations, ratios of PCr/Pi remained higher (p = 0.039) and NADH levels lower (p = 0.007) 6 weeks after ending the diet. ATP/Pi ratios returned to baseline levels again (p = 0.168). CONCLUSION: Low-calorie dieting reduces neurohormonal stress axis activity and increases the neuroenergetic status in obesity. This effect was of a transient nature in terms of stress hormonal measures. In contrast, PCr/Pi ratios remained increased after dieting and at follow-up while NADH levels were still reduced, which indicates a persistently unsettled neuroenergetic homeostasis upon diet-induced rapid body weight loss.


Assuntos
Restrição Calórica , Dieta Redutora , Metabolismo Energético , Homeostase , Neurogênese , Trifosfato de Adenosina/biossíntese , Biomarcadores/sangue , Composição Corporal , Peso Corporal , Glucose/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...